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Mineral Stratification in Magnetohydrostatic Separation

L. YANIV, Y. ZIMMELS, and I. J. LIN*

MINERAL ENGINEERING RESEARCH CENTER, TECHNION—LLT.
HAIFA, ISRAEL

Abstract

The magnetohydrostatic method can be used to separate slightly magnetic or
nonmagnetic particles according to differences in their specific gravities and
magnetic susceptibilities. The classical approach is to effect stratification prior
to separation. This paper discusses some of the significant parameters which
bear on the design and pattern of the expected stratification in the separation
cell. As the characteristics of the magnetic field, and consequently those of the
magnetic forces, are determined by the geometry of the poles, this subject is
treated first. In this context a new approach, whereby the range of stratification
is extended, using positive as well as negative gradients, is presented. Finally, the
effect of the relative size and shape of the particles on stratification is discussed.

INTRODUCTION

Magnetohydrostatic separation is based on the “weighting” or “lighten-
ing” of a magnetic liquid which serves as a separation medium by means
of an external force exerted by a vertical inhomogeneous magnetic field
applied to it. Acting in conjunction with gravity, this force causes a solid
particle to rise or fall along the gravity axis until equilibrium is established.

In principle, the technique is analogous to the sink-float method, over
which it has the following advantages:

(a) It permits simuitaneous separation of several fractions.
(b) By appropriate choice of the magnetic field intensity, upward

*To whom corresponidence should be addressed.
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expulsion of heavy solids and downward expulsion of light ones
can be effected.

(c) The value of the induced apparent specific gravities can be varied
continuously with variation of the applied field.

(d) The paramagnetic liquid used as the medium is nonvolatile, non-
toxic, and often easier to recycle than the heavy liquids com-
monly used in the sink—float process. It is also cheaper.

THEORETICAL

General

The magnetic force per unit volume of a particle immersed in a mag-
netic liquid in a nonhomogeneous magnetic field is given by

f.=30u — )VEH? ¢y

In conjunction with gravity and the magnetic susceptibility of the solid
particle taken into consideration, the following balance of forces should
be satisfied at equilibrium:

F,+F,=0 93]
Resorting to the concept of specific gravity, we replace Eq. (2) by

pp = p1+ 30 — XJV(H?)K 3)

where k is a unit vector colinear with gravity.
To determine the apparent density of the magnetic liquid, we must
know the following parameters:

(a) V(H?) as a function of the location in the separation cell.
(b) The magnetic susceptibility of the liquid.
(c) The specific gravity of the liquid.

In what follows, we confine ourselves to parameters related to item (a).

Influence of Pole Configuration

The general geometry of wedge-type and curved poles is shown in
Figs. 1 and 2.
Assuming that the magnetic permeability of the poles u is very large
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X

Fi1G. 1. Geometry of wedge-type pole pieces.

AN /.

X

y

Fic. 2. Geometry of curved pole pieces.

compared with that of the magnetic liquid, we may regard the pole face
as an equipotential surface, namely,

P = const @
The magnetic field is given (1) by
= —VP 5)

Recalling that the divergence of the field is zero, the Laplace equation
is obtained:

V2P =0 )

Equation (6) has two types of solutions which can be used to construct
elementary poles. For the wedge-type configuration (/):

P = A0 )]
and for the curved configuration:
P = Ar*sin K6 ®)
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Wedge-Type and Curved Configuration

Substituting in Eq. (1) the magnetic fields obtained from Eqs. (7) and
(8) by means of (5), we obtain, respectively,

74

f, = “rTl" C)]
where
0=1%xX— %
and
£, = 1 A%k%(k — 1)r= 3, (10)

where A4 i1s a constant, and Ir is a unit vector colinear with r.
The distribution of the magnetic force per unit volume and of the
magnetic field along the y-axis are shown in Figs. 3 and 4.

Influence of Wedge Angle

The influence of the wedge angle on the force distribution is determined
as follows (see Fig. 5 for details).

Assuming no edge effect (see also the section entitled “Influence of
Edge Effects on Magnetic Force and Magnetic Field Distribution”)
we may write:

Hyh = HIl = const (11

where | = x + A, and Hj is the magnetic field in the air gap.
Substituting Eq. (11) in (1), we find

K Hoh
ey L (12)
Substituting, as per Fig. 5,
d
=3 cot 0 (13)

in Eq. (12), we find the sought relationship (3):

7, H,2d? cot 0
f, = *ﬁo—djg—aly 14
4(X + 3 cot 6)

Figure 6 shows the force distribution as a function of 8 for an aqueous
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FiG. 3. Magnetic force distribution per unit volume as a function of y for
wedge-type pole configuration.
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FiG. 4. Magnetic field distribution as a function of y for wedge-type
configuration.
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Fic. 5. Geometrical parameters of wedge-type configuration.
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of location x.
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solution of MnCl,-4H,0 with y;, = 50 x 10~° emu/cm?, an air gap of
2 cm, and an applied field H, = 10 kOe.

Pole Configuration for Weighting and Lightening the Magnetic Liquid

Weighting. Weighting of the magnetic liquid is effected by the con-
figuration in Fig. 8(b). The apparent density of the liquid is given by

27,Ho2d? cot? §

gy + dcot 6)° (15)

pp = P +
and its distribution along the y-axis is shown in Fig. 7(a).

Lightening. Lightening of the magnetic liquid is effected by the con-
figuration in Fig. 8(a). The apparent density of the liquid is given (3) by

_ 25.Hy*d? cot? 0
Pr = P~ 05 T doot B) (16)

and its distribution along the y-axis is shown in Fig. 7(b).

Discontinuous Alternate Lightening and Weighting. Discontinuous alter-
nate lightening and weighting is effected by the configuration in Fig. 8(c).
The apparent density is given by Eq. (15) along the positive (+ y)-direction
and by Eq. (16) along the negative (— y)-direction. Its distribution along
the y-axis is shown in Fig. 7(c).

Continuous Alternate Lightening and Weighting. Continuous alternate
lightening and weighting is effected by the configuration in Fig. 8(d).
The apparent density can be approximately evaluated by Eq. (15). For
0<y<L/2and by Eq. 17)for L2 < y £ L:

_ 25, Ho*d? cot? 0 an
Pr =Pt~ L + deot 6 — 2p)>

At y = L/2 we have p, = p, as VH = 0. The distribution of the ap-
parent density along the y-axis is shown in Fig. 7(d).

Influence of Particle Shape and Size on Magnetic Force (2)

The following analysis is based on the assumption that the particles
are weakly paramagnetic or diamagnetic.
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sp'lgr/cm®) 4 o' (gr/em®)
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Fi1G. 7. Distribution of apparent density as a function of y. (a) In weighting of

magnetic liquid. (b) In lightening of magnetic liquid. (c) In discontinuous

lightening and weighting of magnetic liquid. (d) In continuous lightening and
weighting of magnetic liquid.
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Fi1G. 8. Pole configuration for the following cases. (a) Lightening the magnetic

liquid. (b) Weighting the magnetic liquid. (c) Alternate lightening and weighting

of magnetic liquid. (d) Continuous lightening and weighting of magnetic
liquid.
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Spherical Particle (Fig. 9a). The magnetic force acting on the particle
is given by

Fly = —

. — v )42
y (—X-l—-r-gb)— cosadV (18)
JV

A unit volume in spherical coordinates is given by
dV = z* dz sin 6 d9 d¢ (19)

where z = 04 (Fig. 9a) and 0 < z < R, and in accordance with the figure
we have

_ G — x,,)A (Ul — zcos ) 2 T 2
Fly = —j (7t 22 = 2z cos 0)2 dz smOdB . d¢ (20)

Solving Eq. (20) (see Appendices I and II), we find

42
Fly = _nQ“—T"-")A [(zfy2 + 1) ln1 + Z - Zb] 1)

Cylindrical Particle (Fig. 9b). A unit volume in cylindrical coordinaties
is given by
dV = xdx df dz (22)

and in accordance with the figure we have

O — x,)4%(1 — x cos 6) (& 2R
Fly = — Z+ x* = Zhxcos B)F x dx . db . dz (23)

Solving Eq. (23) (see Appendix III), we find
3* —b
ley = -Zn(XI - Xp)Azl:(l b2)2 b:| (24)
where b = R/l

Cubical Particle (Fig. 9¢). In accordance with the figure,

(Xl -y ) I+R I+R +R
—_ p.
Fly = O T RO? jz—x dyj dxj dz 25)

~R -R
Solving Eq. (25) (see Appendix IV), we find

b b b b
= — — 2l -1y - LY
Fly = =2n(x, — x,)4 I:l s tan (1 — b) + g btan (1 ¥ b):l
(26)
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Fic. 9. Coordinates of solid particles in a magnetohydrostatic system.
(a) Coordinates of a sphere. (b) Coordinates of a cylinder. (¢) Coordinates of
a cube.
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The influence of particle shape and size on the magnetic force is shown
in Tables 1 and 2, clearly indicating that their contribution in stratification
of particles with the same density and magnetic susceptibility is minor.

Curved Configuration

In this case the force and field distributions depend on the relevant
interval of the parameter £ in Eq. (10), as shown in Fig. 10.

For k > 2: Both A and V|H| increase with r, as does the force.

For k = 2: H increases with r, but V|H| = const.

For 3/2 < k < 2: H increases and V|H| decreases with r, H being
the dominant function. The magnetic force also
increases.

For k = 3/2: H increases and V|H| decreases with r at the same
rate, and their product yields f,, = const.

For 1 < k < 3/2: H increases and V|H| decreases with r; V|H|
being the dominant function, the force decreases.

For k = 0: No force.

Fork =1: H = const. V|H| = 0, and the force vanishes.
ForO <k < 1: Both H and V{H| decrease with r, as does the force.
For k < 0O: Both H and V|H| decrease with r; because of the

negative V|H|, the case is equivalent to a wedge-
type configuration with a flatter distribution of
the magnetic force.

Selected configurations for some of the above cases are shown in
Figs. 11A-11D.

Influence of Spherical Particle Size on Magnetic Force in Curved Configuration
(Fig. 12)

According to Eq. (10), the magnetic force acting on a particle in the
y-direction is given by

Fly = (x; — x,)A*K*(k — l)j r* =3 cos a dV 27
v

"l It 1 1 Il

=1 0 |

nio -
w
x

L
2

(&[] o

F1G. 10. Interval of &.
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k=2

P = Ar’sin26
fir =4y, A%r

FiG. 11A. Hyperbolic pole configuration in a magnetohydrostatic system.

k=3/2

=~ 9X A2
fir= =

P = Ar¥2sin(3/2)6

1

f

FiG. 11B. Isodynamic pole corfiguration in a magnetohydrostatic system.
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P=Ar%2sin(5/2)8 g =
fir= Dx A%r?
Y

Fic. 11C. Pole configuration for k = 5/2 in a magnetohydrostatic system.

Equation (27), in accordance with the geometrical relations in Fig. 12,
yields

R
Foly = (1= 1) A%k — Dr¢= j X d
0
2 T
xJ‘ dqb‘[ (I —xcosB)sinfBdd (28)
0 0

Solving Eq. 28 (see Appendix V), we find
(x: = X,,)AZkl:(l —~ RPGHD _ (] 4 R+

By = 27— E+ 1)

+ (l-l- R)2k+1 - (l— R)2k+1
l

+ (- R* -+ R)Zk] (29)
For k = 3/2 (commonly called the isodynamic case), Eq. (29) becomes
_ (xl . Xp)A2 1 5 2 .

Ely =9V 3 1 - s\ 7 (30)

It is seen that the behavior is truly isodynamic only when R//—-0. When
R/I is larger, the separator behaves like a screen.
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FiG. 11D. Pole configuration for k = 5/4 in a magnetohydrostatic system.
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FIG. 12, Spherical particle in curved pole configuration.

EXPERIMENTAL

Measurement of the Magnetic Force Acting on a Spherical Particle

The experiment was carried out on hollow glass spheres (negligible
magnetic susceptibility) filled with mercury using a Sartorius mass balance
(accuracy +107* g). See Fig. 13. The variable parameters were the sphere
diameter, the air gap, and the applied current. The results in Table 3 (ob-
tained for a magnetic liquid with x;, = 35 x 107¢ emu/cm?®) show good
agreement between theory and experiment.

Determination of the Magnetic Field Distribution in the y-
Direction

The experimental device comprised an x-y recorder and a Bell-G20
gaussmeter. Results for a given air gap and wedge angle are shown in Fig.
14.
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Wa

Fic. 13. Measuring device for magnetohydrostatic forces.

TABLE 3

Calculated vs Experimental Force in ‘“Ideal” Zone

Measured Calculated

) magnetic magnetic
Air gap A x 1073 force force
(cm) l(cm) R (cm) b Oe-cm Finag (dyn) Frag (dyn)  AF (%)
33 6.06 0.89 0.147 20.56 192 197.2 +2.7
7.65 1.41 0.184 20.56 395 371 —6
6.06 1,60 0.264 20.56 1085 1161 +7
5.2 10.2 0.89 0.087 20.58 37 39 +5.4
10.2 141 0.138 20.58 165 162 —1.8
10.2 1.60 0.156 20.58 232 237 +-2.1

Influence of Particle Shape on Location

The experiment was carried out with the same balance on particles of
uniform size in three shapes. Results are shown in Fig. 15.

Influence of Edge Effects on Magnetic-Force and Magnetic Field
Distribution

In order to allow for the edge effect disregarded in the theoretical
analysis, the following experimental results are presented in Figs. 16-18.

(a) The magnetic-force distribution as a function of the particle radius,
air gap, applied current, and location.
(b) A three-dimensional representation of the isoflux density surface

).
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Fic. 14. Magnetic field distribution: calculated vs experimental.
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FiG. 15. Influence of particle shape on location in the system.
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Fi1G. 16A. Magnetic-force distribution as a function of particle radius, current,
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and location in the system,
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Fic. 16B. Magnetic-force distribution as a function of particle radius, current,
and location in the system.
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FiG. 16C. Magnetic-force distribution as a function of particle radius, current,
and location in the system.
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FiG. 18. Three-dimensional representation of vertical isodirectional force.
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(c) A three-dimensional representation of the vertical isodirectional
force (4).

Stratification in Different Pole Configurations (5)

The experiment was carried out on three configurations: ordinary
wedge-type, wedge-type designed for a negative and positive gradient,
and hyperbolic geometry. Results are shown in Fig. 19.

CONCLUSIONS

The following conclusions ¢an be drawn from the results of this work:

(a) The pole configuration can be designed to effect separation of a
given mixture of solids, in accordance with their physical pro-
perties, on the basis of preliminary calculations.

(b) The stratification pattern of minerals with the same density and
magnetic susceptibility is determined by the largest particle size.

{c) The stratification range can be extended by means of a configura-
tion which generates a positive as well as negative field gradient.

(d) Feeding the mixture at half-height of the air gap is recommended,
thereby avoiding an edge effect.

The main limitation (6) of the method is that the magnetic force can
be increased either by reduction of the air gap (whereby the magnetic field
is increased) or by use of a high magnetic-susceptibility liquid (e.g.,
ferrofluid). The first solution curtails the capacity of the separator, the
second increases the cost of operation. This problem is currently the object
of intensive study at the Mineral Engineering Department of the Technion.

APPENDIX I. SOLUTION OF EQ. (20)

R ( — AZ l —z 9 n 2z
{7 G x4 cos ) , .
Fly = go 7+ 22 = 2z cos ) z* dz osm6d8 . do
Denoting « = /* + z? and § = —2Iz, we have

R *1/1— zcosH

R _ 2 2 e

Fly = =2n(y, ~ x4 Lz dz[oﬂ(cx T F cos B)
+ /% In(x + 8 cos 9)] d-n
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FiG. 19. Mineral stratification in a magnetohydrostatic system in the inverse
wedge-type pole configuration (top) and in the wedge-type pole configuration
(bottom).
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R 2
_ 2 z*dz zdz I+ z
ley = _'zn(Xl - Xp)A [Jl) l(lz _ 22) + J‘ 12 In (l 2):] (I-Z)

The first integral equals

R 224z IR I-z
LI(V =" 21[ Mo+ 22]
IR
2,[1 Inj— + ZR] @3)

and the second equals

R I+ z R1/z? I+z =z
j 212111( —z,)dz‘[oi(l_z“ 1>1n1——-_z+2—1}

1/R? I+R R
= Z(‘l—f - l) In it_R + -2—l (I-4)
whence
— ¥, )A> 1 b
Fly = —'n—(l—?@- [bz nT—3g to_ Zb] (1-5)
where R/l = b
APPENDIX IL. VERIFICATION OF EQ. (21)
_ n(y — x)A° 2] 1+b 1+b_
ley————————2 b1 b+ln1 5 2b

For b « 1, the logarithmic expression reduces to

o T = 1487 2 1
Fly = — 2 3 + 3 II-1)
or, neglecting the highest power of b,
b3
le = (XI - Xp)Az (II'Z)

Noting that ¥ = 4zR3/3, we divide both sides by it and obtain the
magnetic force per unit volume:

F WV = 1(1, — x,)4%/1? (11-3)
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APPENDIX I1ll. SOLUTION OF EQ. (23)

_ (u— x4%d = xcos ) (° = (2R
Fuly = - (/% + x*> — 2Ix cos 0)* Ode o a6 o dz

Integration with respect to z yields

2R
j dz = 2R (II1-1)
0

and with respect to 8:

®  (l—-xcos@)do _2nl(? + x?) 4nlx? 1I1.2)
o U+ x* =2xcosh) (*>—x») " (1*=x%)? (II-
whence
R 13 3
Rl =~ = 1)4°R | Tty e (I-3)
o (7 —x%)
Finally, substituting R// = b, we have
36 — b
Fly = =2n(x, — x)A*| 7——33 + b (I11-4)
PUOLA =59
APPENDIX IV. SOLUTION OF EQ. (25)
(Xl _ X) JHR JW-R J+R
Fly = — 5—28 d d d
Y (7 + x)? )ir 7 -R ~ -R ‘
As in the preceding case, integration with respect to z yields
+R
j dz = 2R av-1)
-R

and with respect to y:

I+R I-R
ydy J 1
L = - IV-
j.l—R(y2 + x2)2 1+ YY" + x? ( 2)

whence

+R 1 1
e —— 2 —
Ealy = = = 2,)4 RX_R [(1 —R +x A+ R+ x2:| a

(IV-3)
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The integrals of the two terms equal, respectively,

+R dx rHR ] L x
j‘_R(l—_‘?{?—_F—;} = | (7= Rtan = R] (Iv-4)
and
+R dx TR g L ox
e il e T e T
whence
Fly = =2(y, — xp)Az[l——?_—b tan~! <1—i—b> - T—f_—b tan™! (%):l

(IV-6)

APPENDIX V. SOLUTION OF EQ. (28)
Fly = (1 — 147k (k — Dr2®=2
R 2n n
xj xzd'xj dd)‘[(l—xcose)sined(?
o Qo Q

Noting that r? = /% + x* — 2xI cos 6, we have
R 2
Fly = (o — x)A%k*k — l)j x* dxj‘ do
0 o]
X j (1> + x* = 2Ix cos ) "2(l — xcos H) sinOdh (V-1)
o]
Integration with respect to ¢ yields

r dé = 2n (V-2)

0

and with respect to 6:

j (/% + x* — 2Ix cos ) (I — x cos ) sin 0 df
0

[ U* + x* — 2xlcos 6)71 cos (I + x? — 2[xcos )< !
=1, 5k = 1) 2k = 1)
(P + x* = 2Ix cos §)*
4%xk(k — 1)

(V-3)
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whence

-y, A% (R [2
ley = R(Xl ZXP) jo [_%x(l + x)Zk—l . liz(l + x)Zk
2k.
—_ _-l.f(l _ x)lk—l + ?xj(l _ x)ZR] dx (V-4)

and finally,

Fly

AP

b

d

F

S

Fﬂ

F

H

k

R

r

|4

X1

Xp

Pp
1.
2.
3.
4.

_ ( — X,,)Azk (I = R***1 _ (] + R)2*+D
-2 TR
(l+ R)2k+1 _ (l— R)2k+1
* l

+(0=-R*™~-(+ R)z":l (V-5

SYMBOLS

constant and magnetic potential, Oe-cm
R/l ratio

air gap, cm

magnetic force, dyn

magnetic force per unit volume, dyn/cm?
gravity force, dyn

force acting on a particle, dyn

magnetic field intensity, Oe

numerical index

radius of particle, cm

radius vector in coordinate system
volume, cm?

magnetic susceptibility of liquid, emu/cm?
magnetic susceptibility of particle, emu/cm3
density, g/cm®
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